Glutathione Peroxidase Assay

Colorimetric assay for the quantitative determination of Glutathione Peroxidase (GPx) activity in tissue homogenates, cell lysates, plasma and erythrocyte lysates.

REF CM703102

For illustrative purposes only. To perform the assay the instructions for use provided with the kit have to be used.

Distributed by:

IBL INTERNATIONAL GMBH
Flughafenstrasse 52a
D-22335 Hamburg, Germany
Phone: +49 (0)40-53 28 91-0
Fax: +49 (0)40-53 28 91-11
IBL@IBL-International.com
www.IBL-International.com
Glutathione Peroxidase Assay Kit
Catalog No. 703102
Materials Supplied

<table>
<thead>
<tr>
<th>Catalog Number</th>
<th>Item</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>703110</td>
<td>GPx Assay Buffer (10X)</td>
<td>1 vial</td>
</tr>
<tr>
<td>703112</td>
<td>GPx Sample Buffer (10X)</td>
<td>1 vial</td>
</tr>
<tr>
<td>703114</td>
<td>Glutathione Peroxidase (control)</td>
<td>1 vial</td>
</tr>
<tr>
<td>703116</td>
<td>GPx Co-Substrate Mixture</td>
<td>3 vials</td>
</tr>
<tr>
<td>703118</td>
<td>GPx Cumene Hydroperoxide</td>
<td>1 vial</td>
</tr>
<tr>
<td>400014</td>
<td>96-Well Plate</td>
<td>1 plate</td>
</tr>
<tr>
<td>400012</td>
<td>Plate Cover</td>
<td>1 cover</td>
</tr>
</tbody>
</table>

If any of the items listed above are damaged or missing, please contact our Customer Service department at (800) 364-9897 or (734) 975-3999. We cannot accept any returns without prior authorization.

WARNING: Not for human or animal disease diagnosis or therapeutic drug use.
Precautions
Please read these instructions carefully before beginning this assay.
For research use only. Not for human or diagnostic use.

If You Have Problems
Technical Service Contact Information
Phone: 888-526-5351 (USA and Canada only) or 734-975-3888
Fax: 734-971-3641
E-Mail: techserv@caymanchem.com
Hours: M-F 8:00 AM to 5:30 PM EST
In order for our staff to assist you quickly and efficiently, please be ready to supply the lot number of the kit (found on the outside of the box).

Storage and Stability
This kit will perform as specified if stored as directed at -20°C and used before the expiration date indicated on the outside of the box.

Materials Needed But Not Supplied
1. A plate reader capable of measuring absorbance at 340 nm
2. Adjustable pipettes and a repeat pipettor
3. A source of pure water; glass distilled water or HPLC-grade water is acceptable

INTRODUCTION
Background
Glutathione peroxidase (GPx) catalyzes the reduction of hydroperoxides, including hydrogen peroxide, by reduced glutathione and functions to protect the cell from oxidative damage. With the exception of phospholipid-hydroperoxide GPx, a monomer, all of the GPx enzymes are tetramers of four identical subunits.1,2 Each subunit contains a selenocysteine in the active site which participates directly in the two-electron reduction of the peroxide substrate.1,2 The enzyme uses glutathione as the ultimate electron donor to regenerate the reduced form of the selenocysteine.1,2

About This Assay
Cayman’s GPx Assay measures GPx activity indirectly by a coupled reaction with glutathione reductase (GR). Oxidized glutathione (GSSG), produced upon reduction of hydroperoxide by GPx, is recycled to its reduced state by GR and NADPH:

\[
\begin{align*}
R-O-O-H + 2GSH & \xrightarrow{GPx} R-O-H + GSSG + H_2O \\
GSSG + NADPH + H^+ & \xrightarrow{GR} 2GSH + NADP^+
\end{align*}
\]

The oxidation of NADPH to NADP⁺ is accompanied by a decrease in absorbance at 340 nm. Under conditions in which the GPx activity is rate limiting, the rate of decrease in the \(A_{340}\) is directly proportional to the GPx activity in the sample.3 The Cayman GPx Assay Kit can be used to measure all of the glutathione-dependent peroxidases in plasma, erythrocyte lysates, tissue homogenates, and cell lysates.

About This Assay
Cayman’s GPx Assay measures GPx activity indirectly by a coupled reaction with glutathione reductase (GR). Oxidized glutathione (GSSG), produced upon reduction of hydroperoxide by GPx, is recycled to its reduced state by GR and NADPH:

\[
\begin{align*}
R-O-O-H + 2GSH & \xrightarrow{GPx} R-O-H + GSSG + H_2O \\
GSSG + NADPH + H^+ & \xrightarrow{GR} 2GSH + NADP^+
\end{align*}
\]

The oxidation of NADPH to NADP⁺ is accompanied by a decrease in absorbance at 340 nm. Under conditions in which the GPx activity is rate limiting, the rate of decrease in the \(A_{340}\) is directly proportional to the GPx activity in the sample.3 The Cayman GPx Assay Kit can be used to measure all of the glutathione-dependent peroxidases in plasma, erythrocyte lysates, tissue homogenates, and cell lysates.
Reagent Preparation

1. GPx Assay Buffer (10X) - (Catalog No. 703110)
 Dilute 2 ml of Assay Buffer concentrate with 18 ml of HPLC-grade water. This final Assay Buffer (50 mM Tris-HCl, pH 7.6, containing 5 mM EDTA) should be used in the assay. When stored at 4°C, this diluted Assay Buffer is stable for at least two months.

2. GPx Sample Buffer (10X) - (Catalog No. 703112)
 Dilute 2 ml of Sample Buffer concentrate with 18 ml of HPLC-grade water. This final Sample Buffer (50 mM Tris-HCl, pH 7.6, containing 5 mM EDTA and 1 mg/ml BSA) should be used to dilute the GPx control and the GPx samples prior to assaying. When stored at 4°C, this diluted Sample Buffer is stable for at least one month.

3. Glutathione Peroxidase (Control) - (Catalog No. 703114)
 This vial contains a solution of bovine erythrocyte GPx. To avoid repeated freezing and thawing, the GPx should be aliquoted into several small vials and stored at -20°C. Prior to use, transfer 10 µl of the supplied enzyme to another vial and dilute with 490 µl of diluted Sample Buffer and keep on ice. The diluted enzyme is stable for four hours on ice. A 20 µl aliquot of this diluted enzyme per well causes a decrease of approximately 0.051 absorbance unit/minute under the standard assay conditions described in Performing the Assay (see page 11).

4. GPx Co-Substrate Mixture - (Catalog No. 703116)
 These vials contain a lyophilized powder of NADPH, glutathione, and glutathione reductase. Each reconstituted vial will be enough reagent for 40 wells. Reconstitute the number of vials that you will need by adding 2 ml of HPLC-grade water to each vial and vortex well. The reconstituted reagent should be kept at 25°C while assaying and then stored at 4°C. If stored at 4°C, the reconstituted reagent is stable for two days. NOTE: Do not freeze the reconstituted reagent.

5. GPx Cumene Hydroperoxidase - (Catalog No. 703118)
 This vial contains a solution of cumene hydroperoxide and should be stored at -20°C when not being used. The reagent is ready to use as supplied.

Sample Preparation

- **Tissue Homogenate**
 1. Prior to dissection, perfuse or rinse tissue with a PBS (phosphate buffered saline) solution, pH 7.4, to remove any red blood cells and clots.
 2. Homogenize the tissue in 5-10 ml of cold buffer (i.e., 50 mM Tris-HCl, pH 7.5, 5 mM EDTA, and 1 mM DTT) per gram tissue.
 3. Centrifuge at 10,000 x g for 15 minutes at 4°C.
 4. Remove the supernatant for assay and store on ice. If not assaying on the same day, freeze the sample at -80°C. The sample will be stable for at least one month.

- **Cell Lysate**
 1. Collect cells by centrifugation (i.e., 1,000-2,000 x g for 10 minutes at 4°C). For adherent cells, do not harvest using proteolytic enzymes, rather use a rubber policeman.
 2. Homogenize cell pellet in cold buffer (i.e., 50 mM Tris-HCl pH 7.5, 5 mM EDTA, and 1 mM DTT).
 3. Centrifuge at 10,000 x g for 15 minutes at 4°C.
 4. Remove the supernatant for assay and store on ice. If not assaying on the same day, freeze the sample at -80°C. The sample will be stable for at least one month.
Plasma and Erythrocyte Lysate

1. Collect blood using an anticoagulant such as heparin, citrate, or EDTA.
2. Centrifuge the blood at 700-1,000 x g for 10 minutes at 4°C. Pipet off the top yellow plasma layer without disturbing the white buffy layer. Store plasma on ice until assaying or freeze at -80°C. The plasma sample will be stable for at least one month.
3. Remove the white buffy layer (leukocytes) and discard.
4. Lyse the erythrocytes (red blood cells) in 4 volumes of ice-cold HPLC-grade water.
5. Centrifuge at 10,000 x g for 15 minutes at 4°C.
6. Collect the supernatant (erythrocyte lysate) for assaying and store on ice. If not assaying the same day, freeze at -80°C. The sample will be stable for at least one month.

NOTE: It has been reported that heme peroxidase activity of hemoglobin can lead to falsely elevated GPx activity in erythrocyte lysates. There was no significant effect in the GPx activity when assayed with cumene hydroperoxide as the substrate. Therefore, it is not necessary to treat the sample with Drabkin's Reagent (potassium ferricyanide/potassium cyanide) to convert hemoglobin to cyanmethemoglobin before assaying.

ASSAY PROTOCOL

Plate Set Up

There is no specific pattern for using the wells on the plate. However, it is necessary to have three wells designated as non-enzymatic or background wells. The absorbance rate of these wells must be subtracted from the absorbance rate measured in the GPx sample and control wells. We suggest that there be at least three wells designated as positive controls and that you record the contents of each well on the template sheet provided on page 19.

Figure 2. Sample plate format

B - Background Wells
C - Positive Control Wells
1-30 - Sample Wells
Pipetting Hints

- It is recommended that an adjustable pipette be used to deliver reagents to the wells.
- Use different tips to pipette the assay buffer (dilute), co-substrate mixture, enzymes, and cumene hydroperoxide.
- Before pipetting each reagent, equilibrate the pipette tip in that reagent (i.e., slowly fill the tip and gently expel the contents, repeat several times).
- Do not expose the pipette tip to the reagent(s) already in the well.

General Information

- The final volume of the assay is 190 µl in all the wells.
- It is not necessary to use all the wells on the plate at one time.
- The assay temperature is 25°C.
- Use the Assay Buffer (dilute) in the assay.
- Monitor the decrease in absorbance at 340 nm using a plate reader.

Performing the Assay

1. **Background or Non-enzymatic Wells** - add 120 µl of Assay Buffer and 50 µl of co-substrate mixture to three wells.

2. **Positive Control Wells (bovine erythrocyte GPx)** - add 100 µl of Assay Buffer, 50 µl of co-substrate mixture, and 20 µl of diluted GPx (control) to three wells.

3. **Sample Wells** - add 100 µl of Assay Buffer, 50 µl of co-substrate mixture, and 20 µl of sample to three wells. To obtain reproducible results, the amount of GPx added to the well should cause an absorbance decrease between 0.02 and 0.135/min. When necessary, samples should be diluted with Sample Buffer or concentrated with an Amicon centrifuge concentrator with a molecular weight cut-off of 10,000 to bring the enzymatic activity to this level. **NOTE:** The amount of sample added to the well should always be 20 µl. To determine if an additional sample control should be performed see the Interferences section (page 14).

4. Initiate the reactions by adding 20 µl of cumene hydroperoxide to all the wells being used. Make sure to note the precise time the reaction is initiated and add the cumene hydroperoxide as quickly as possible.

5. Carefully shake the plate for a few seconds to mix.

6. Read the absorbance once every minute at 340 nm using a plate reader to obtain at least 5 time points. **NOTE:** The initial absorbance of the sample wells should not be above 1.2 or below 0.5.
Calculations

1. Determine the change in absorbance (ΔA_{340}) per minute by:
 a. Plotting the absorbance values as a function of time to obtain the slope (rate) of the linear portion of the curve (a graph is shown on page 13 using bovine erythrocyte GPx) -or-
 b. Select two points on the linear portion of the curve and determine the change in absorbance during that time using the following equation:

$$\Delta A_{340/\text{min.}} = \frac{A_{340} (\text{Time 2}) - A_{340} (\text{Time 1})}{\text{Time 2 (min.)} - \text{Time 1 (min.)}}$$

2. Determine the rate of $\Delta A_{340}/\text{min.}$ for the background or non-enzymatic wells and subtract this rate from that of the sample wells.

3. Use the following formula to calculate the GPx activity. The reaction rate at 340 nm can be determined using the NADPH extinction coefficient of 0.00373 μM$^{-1}$ cm$^{-1}$. One unit is defined as the amount of enzyme that will cause the oxidation of 1.0 nmol of NADPH to NADP$^+$ per minute at 25°C.

$$\text{GPx activity} = \frac{\Delta A_{340/\text{min.}}}{0.00373 \text{ M}^{-1}} \times \frac{0.19 \text{ ml}}{0.02 \text{ ml}} \times \text{Sample dilution} = \text{nmol/min/ml}$$

*The actual extinction coefficient for NADPH at 340 nm is 0.00622 μM$^{-1}$ cm$^{-1}$. This value has been adjusted for the pathlength of the solution in the well (0.6 cm).

Figure 1. Activity of bovine erythrocyte GPx

Performance Characteristics

Precision:

When a series of seventy-seven GPx measurements were performed on the same day, the intra-assay coefficient of variation was 5.7%. When a series of seventy-seven GPx measurements were performed on five different days under the same experimental conditions, the inter-assay coefficient of variation was 7.2%.

Assay Range:

The dynamic range of the assay is limited only by the accuracy of the absorbance measurement. Most plate readers are linear to an absorbance of 1.2. Samples containing GPx activity between 50-344 nmol/min/ml can be assayed without further dilution or concentration. This GPx activity is equivalent to an absorbance decrease of 0.02 to 0.135 per minute.
Interferences

- Samples that have a high intrinsic absorbance at 340 nm may exceed the absorbance maximum of the plate reader. Therefore, samples with an initial absorbance >1.2 should be diluted with Sample Buffer until the absorbance is lowered. For example, hemoglobin absorbs significantly at 340 nm, and thus erythrocyte lysates must be diluted before assaying.

- Samples containing high levels of GSSG or NADPH consuming enzymes will cause the GPx levels to be overestimated. A blank without cumene hydroperoxide should be performed to assess non-specific oxidation of NADPH. GSSG can be removed from the sample by either dialysis or passing through a gel filtration column.

The following reagents were tested for interference in the assay.

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Will Interfere (Yes or No)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buffers:</td>
<td></td>
</tr>
<tr>
<td>Tris</td>
<td>No</td>
</tr>
<tr>
<td>Phosphate</td>
<td>No</td>
</tr>
<tr>
<td>Detergents:</td>
<td></td>
</tr>
<tr>
<td>CHAPS (≤ 1%)</td>
<td>No</td>
</tr>
<tr>
<td>Triton X-100 (≤ 1%)</td>
<td>No</td>
</tr>
<tr>
<td>Tween 20 (≤ 1%)</td>
<td>No</td>
</tr>
<tr>
<td>Protease inhibitors/Chelators:</td>
<td></td>
</tr>
<tr>
<td>Antipain (≤0.1 mg/ml)</td>
<td>No</td>
</tr>
<tr>
<td>Chymostatin</td>
<td>Yes</td>
</tr>
<tr>
<td>Leupeptin (≤10 µg/ml)</td>
<td>No</td>
</tr>
<tr>
<td>PMSF (≤200 µM)</td>
<td>No</td>
</tr>
<tr>
<td>Trypsin (≤10 µg/ml)</td>
<td>No</td>
</tr>
<tr>
<td>EDTA (≤5 mM)</td>
<td>No</td>
</tr>
<tr>
<td>EGTA (≤5 mM)</td>
<td>No</td>
</tr>
<tr>
<td>Solvents:</td>
<td></td>
</tr>
<tr>
<td>Ethanol (10 µl)</td>
<td>No</td>
</tr>
<tr>
<td>Methanol (10 µl)</td>
<td>No</td>
</tr>
<tr>
<td>Dimethylsulfoxide (10 µl)</td>
<td>No</td>
</tr>
<tr>
<td>Others:</td>
<td></td>
</tr>
<tr>
<td>Bovine serum albumin (≤ 1%)</td>
<td>No</td>
</tr>
<tr>
<td>Glycerol (≤ 10%)</td>
<td>No</td>
</tr>
<tr>
<td>2-Mercaptoethanol</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Troubleshooting

<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible Causes</th>
<th>Recommended Solutions</th>
</tr>
</thead>
</table>
| Erratic values; dispersion of duplicates/triplicates | A. Poor pipetting/technique
B. Bubble in the well(s) | A. Carefully tap the side of the plate with your finger to remove bubbles
B. Be careful not to splash the contents of the wells |
| The initial absorbance in the wells is less than 0.1 | Co-substrate mixture was not added to the wells | Make sure to add all components to the wells |
| No decrease in absorbance was observed in the sample wells | A. Enzyme activity was too low
B. Cumene Hydroperoxide was not added to the wells | A. Concentrate your sample using an Amicon centrifuge concentrator with a 10,000 MW cut-off and re-assay
B. Make sure to add all components to the wells |
| Reaction rate was too fast. The initial absorbance of the sample well is below 0.5 | Too much enzyme added to well(s) | Dilute your samples with diluted sample buffer and re-assay |
| The initial absorbance in the sample wells is above 1.2 | | Dilute your sample with diluted sample buffer and re-assay |

References

Related Products
- Antioxidant Assay Kit - Cat. No. 709001
- Catalase Assay Kit - Cat. No. 707002
- Glutathione Assay Kit - Cat. No. 703002
- Glutathione Reductase Assay Kit - Cat. No. 703202
- Glutathione S-Transferase Assay Kit - Cat. No. 703302
- Hydrogen Peroxide (urinary) Assay Kit - Cat. No. 706011
- 4-hydroxy Hexenal - Cat. No. 32060
- 4-hydroxy Nonenal - Cat. No. 32100
- 8-Isoprostane EIA Kit - Cat. No. 516351
- Lipid Hydroperoxide Assay Kit - Cat. No. 705002
- Protein Carbonyl Assay Kit - Cat. No. 1005020
- Superoxide Dismutase Assay Kit - Cat. No. 706002
- TBARS Assay Kit - Cat. No. 1009055
- Thioredoxin Reductase Assay Kit - Cat. No. 10007892
- Xanthine Oxidase Assay Kit - Cat. No. 10010895

Additional Reading
Go to www.caymanchem.com/703102/references for a list of publications citing the use of Cayman's Glutathione Peroxidase Assay Kit.
Warranty and Limitation of Remedy

Cayman Chemical Company makes no warranty or guarantee of any kind, whether written or oral, expressed or implied, including without limitation, any warranty of fitness for a particular purpose, suitability and merchantability, which extends beyond the description of the chemicals hereof. Cayman warrants only to the original customer that the material will meet our specifications at the time of delivery. Cayman will carry out its delivery obligations with due care and skill. Thus, in no event will Cayman have any obligation or liability, whether in tort (including negligence) or in contract, for any direct, indirect, incidental or consequential damages, even if Cayman is informed about their possible existence. This limitation of liability does not apply in the case of intentional acts or negligence of Cayman, its directors or its employees.

Buyer’s exclusive remedy and Cayman’s sole liability hereunder shall be limited to a refund of the purchase price, or at Cayman’s option, the replacement, at no cost to Buyer, of all material that does not meet our specifications.

Said refund or replacement is conditioned on Buyer giving written notice to Cayman within thirty (30) days after arrival of the material at its destination. Failure of Buyer to give said notice within thirty (30) days shall constitute a waiver by Buyer of all claims hereunder with respect to said material.

For further details, please refer to our Warranty and Limitation of Remedy located on our website and in our catalog.
Liability: Complaints will only be accepted in written and if all details of the test performance and results are included (complaint form available from IBL or supplier). Any modification of the test procedure or exchange or mixing of components of different lots could negatively affect the results. These cases invalidate any claim for replacement. Regardless, in the event of any claim, the manufacturer’s liability is not to exceed the value of the test kit. Any damage caused to the kit during transportation is not subject to the liability of the manufacturer.

Symbols Version 3.5 / 2008-10-01

IBL AFFILIATES WORLDWIDE

IBL International GmbH
Flughafenstr. 52A, D-22335 Hamburg, Germany
Tel.: +49 (0) 40 532891 -0 Fax: -11
E-MAIL: IBL@IBL-International.com
WEB: http://www.IBL-International.com

IBL Deventer B.V.
Zutphenseweg 55, NL-7418 AH Deventer, The Netherlands
Tel.: +31 570-66 15 15 Fax: -60 73 86
E-MAIL: IBL@IBL-International.com
WEB: http://www.IBL-International.com

IBL - Transatlantic Corp.
288 Wildcat Road, Toronto, Ontario M3J 2N5
Toll free: +1 (866) 645 -6755
Tel.: +1 (416) 645 -1703 Fax: -1704
E-MAIL: IBL@IBL-Transatlantic.com
WEB: http://www.IBL-Transatlantic.com