CYFRA 21-1 ELISA

Enzyme immunoassay for the quantitative determination of CYFRA 21-1 in human serum and plasma.

REF RE54101

Σ 96

i 2-8°C

EU: IVD CE
1 INTRODUCTION

1.1 Intended Use

Enzyme immunoassay for the diagnostic quantitative determination of CYFRA 21-1 in human serum and plasma.

1.2 Summary and Explanation

Cytokeratins are epithelial markers whose expression is not lost during malignant transformation. CYFRA 21-1 is a cytokeratin-19 fragment that is soluble in serum and can be used as a circulating tumor marker. Although expressed in all body tissues, its major occurrence is in the lung, particularly in lung cancer tissues. CYFRA 21-1 is a sensitive and specific tumor marker of non-small-cell lung cancer (NSCLC), especially of squamous cell subtype (1,2,3). It also reflects the extent of the disease and has an independent prognostic role along with performance status and disease stage in NSCLC (4,5,6). In addition, detection of serum CYFRA 21-1 allows for identification of high risk patients that may benefit from adjuvant chemotherapy (7), and enables the early detection of progressive disease in recurrent NSCLC (8). Additionally, CYFRA 21-1 has been described as a useful marker for esophageal squamous cell carcinoma (9) and for therapy monitoring of bladder cancer (10).

The CYFRA 21-1 ELISA uses the two mouse monoclonal antibodies KS19.1 and BM19.21 to determine cytokeratin-19 fragments.

2 PRINCIPLE OF THE TEST

The IBL CYFRA 21-1 ELISA Kit is a solid phase enzyme-linked immunosorbent assay (ELISA) based on the sandwich principle.

The microtiter wells are coated with a monoclonal [mouse] antibody directed towards a unique antigenic site of the CYFRA 21-1 molecule.

An aliquot of patient sample containing endogenous CYFRA 21-1 is incubated in the coated well with enzyme conjugate, which is an anti- CYFRA 21-1 monoclonal antibody conjugated with horseradish peroxidase. After incubation the unbound conjugate is washed off.

The amount of bound peroxidase is proportional to the concentration of CYFRA 21-1 in the sample. Having added the substrate solution, the intensity of colour developed is proportional to the concentration of CYFRA 21-1 in the patient sample.

3 WARNINGS AND PRECAUTIONS

1. This kit is for in vitro diagnostic use only. For professional use only.
2. All reagents of this test kit which contain human serum or plasma have been tested and confirmed negative for HIV I/II, HBsAg and HCV by FDA approved procedures. All reagents, however, should be treated as potential biohazards in use and for disposal.
3. Before starting the assay, read the instructions completely and carefully. Use the valid version of the package insert provided with the kit. Be sure that everything is understood.
4. The microplate contains snap-off strips. Unused wells must be stored at 2 °C to 8 °C in the sealed foil pouch and used in the frame provided.
5. Pipetting of samples and reagents must be done as quickly as possible and in the same sequence for each step.
6. Use reservoirs only for single reagents. This especially applies to the substrate reservoirs. Using a reservoir for dispensing a substrate solution that had previously been used for the conjugate solution may turn solution colored. Do not pour reagents back into vials as reagent contamination may occur.
7. Mix the contents of the microplate wells thoroughly to ensure good test results. Do not reuse microwells.
8. Do not let wells dry during assay; add reagents immediately after completing the rinsing steps.
9. Allow the reagents to reach room temperature (21-26°C) before starting the test. Temperature will affect the absorbance readings of the assay. However, values for the patient samples will not be affected.
10. Never pipet by mouth and avoid contact of reagents and specimens with skin and mucous membranes.
11. Do not smoke, eat, drink or apply cosmetics in areas where specimens or kit reagents are handled.
12. Wear disposable latex gloves when handling specimens and reagents. Microbial contamination of reagents or specimens may give false results.
13. Handling should be done in accordance with the procedures defined by an appropriate national biohazard safety guideline or regulation.
14. Do not use reagents beyond expiry date as shown on the kit labels.
15. All indicated volumes have to be performed according to the protocol. Optimal test results are only obtained when using calibrated pipettes and microtiter plate readers.
16. Do not mix or use components from kits with different lot numbers. It is advised not to exchange wells of different plates even of the same lot. The kits may have been shipped or stored under different conditions and the binding characteristics of the plates may result slightly different.
17. Avoid contact with Stop Solution containing 0.5 M H2SO4. It may cause skin irritation and burns.
18. Some reagents contain Proclin 300, BND and/or MIT as preservatives. In case of contact with eyes or skin, flush immediately with water.
19. TMB substrate has an irritant effect on skin and mucosa. In case of possible contact, wash eyes with an abundant volume of water and skin with soap and abundant water. Wash contaminated objects before reusing them. If inhaled, take the person to open air.

20. Chemicals and prepared or used reagents have to be treated as hazardous waste according to the national biohazard safety guideline or regulation.

21. For information on hazardous substances included in the kit please refer to Material Safety Data Sheets. Material Safety Data Sheets for this product are available upon request directly from IBL.

4 REAGENTS

4.1 Reagents provided

1. **Microtiterwells**, 12x8 (break apart) strips, 96 wells;
 Wells coated with anti-CYFRA 21-1 antibody (monoclonal).

2. **Standard (Standard 0-4)**, 5 vials (lyophilized), 1.0 mL;
 Concentrations: 0; 3; 10; 25; 50 ng/mL
 See „Preparation of Reagents“;
 Contain non-mercury preservative.

3. **Control Low & High**, 2 vials (lyophilized), 1.0 mL each,
 see „Reagent Preparation“
 Control values and ranges please refer to vial label or QC-Datasheet.
 Contain non-mercury preservative.

4. **Sample Diluent**, 1 vial, 3 mL, ready to use,
 Contains non-mercury preservative.

5. **Assay Buffer**, 1 vial, 7 mL, ready to use,
 Contains non-mercury preservative.

6. **Enzyme Conjugate**, 1 vial, 1.2 mL, ready to use,
 Anti-CYFRA 21-1 antibody conjugated to horseradish peroxidase;
 Contains non-mercury preservative.

7. **Substrate Solution**, 1 vial, 14 mL, ready to use,
 Tetramethylbenzidine (TMB).

8. **Stop Solution**, 1 vial, 14 mL, ready to use,
 contains 0.5M H₂SO₄
 Avoid contact with the stop solution. It may cause skin irritations and burns.

9. **Wash Solution**, 1 vial, 30 mL (40X concentrated),
 see „Preparation of Reagents“.

 Note: Additional Sample Diluent for sample dilution is available upon request.

4.2 Materials required but not provided

- A microtiter plate calibrated reader (450 ± 10 nm)
- Calibrated variable precision micropipettes.
- Absorbent paper.
- Distilled or deionized water
- Timer
- Graph paper or software for data reduction

4.3 Storage Conditions

When stored at 2 °C to 8 °C unopened reagents will retain reactivity until expiration date. Do not use reagents beyond this date.

Opened reagents must be stored at 2 °C to 8 °C. Microtiter wells must be stored at 2 °C to 8 °C. Once the foil bag has been opened, care should be taken to close it tightly again.

Note: The reconstituted standards and control are stable for at least 4 weeks at 2-8°C.
For longer storage freeze at -20°C.

4.4 Reagent Preparation

Bring all reagents and required number of strips to room temperature prior to use.

Standards

Reconstitute the lyophilized contents of the standard vial with 1.0 mL Aqua dest.

Note: The reconstituted standards are stable for at least 4 weeks at 2 °C to 8 °C.
For longer storage freeze at -20°C.
Control
Reconstitute the lyophilized content with 1.0 mL Aqua dest. and let stand for 10 minutes in minimum. Mix the control several times before use.

Note: The reconstituted control is stable for at least 4 weeks at 2 °C to 8 °C. For longer storage freeze at -20°C.

Wash Solution
Add deionized water to the 40X concentrated Wash Solution. Dilute 30 mL of concentrated Wash Solution with 1170 mL deionized water to a final volume of 1200 mL. The diluted Wash Solution is stable for 2 weeks at room temperature.

4.5 Disposal of the Kit
The disposal of the kit must be made according to the national regulations.

4.6 Damaged Test Kits
In case of any severe damage to the test kit or components, IBL has to be informed in writing, at the latest, one week after receiving the kit. Severely damaged single components should not be used for a test run. They have to be stored until a final solution has been found. After this, they should be disposed according to the official regulations.

5 SPECIMEN COLLECTION AND PREPARATION
Serum, heparin plasma and citrate plasma can be used for this test. EDTA plasma results in 20% increased values. Do not use haemolytic, icteric or lipaemic specimens. Please note: Samples containing sodium azide should not be used in the assay.

5.1 Specimen Collection
Serum:
Collect blood by venipuncture (e.g. Sarstedt Monovette # 02.1388.001), allow to clot, and separate serum by centrifugation at room temperature. Do not centrifuge before complete clotting has occurred. Patients receiving anticoagulant therapy may require increased clotting time.

Plasma:
Whole blood should be collected into centrifuge tubes containing anti coagulant and centrifuged immediately after collection. (e.g. Sarstedt Monovette with the appropriate plasma preparation)

5.2 Specimen Storage and Preparation
Specimens should be capped and may be stored for up to 2 days at 2 °C to 8 °C prior to assaying. Specimens held for a longer time should be frozen only once at -20°C prior to assay. Thawed samples should be inverted several times prior to testing.

5.3 Specimen Dilution
If in an initial assay, a specimen is found to contain more than the highest standard, the specimens can be diluted with Sample Diluent and reassayed as described in Assay Procedure. For the calculation of the concentrations this dilution factor has to be taken into account. Example:

a) dilution 1:10: 10 µL Serum + 90 µL Sample Diluent (mix thoroughly)
b) dilution 1:100: 10 µL dilution a) 1:10 + 90 µL Sample Diluent (mix thoroughly).
6 ASSAY PROCEDURE

6.1 General Remarks

− All reagents and specimens must be allowed to come to room temperature before use. All reagents must be mixed without foaming.
− Once the test has been started, all steps should be completed without interruption.
− Use new disposal plastic pipette tips for each standard, control or sample in order to avoid cross contamination.
− Absorbance is a function of the incubation time and temperature. Before starting the assay, it is recommended that all reagents are ready, caps removed, all needed wells secured in holder, etc. This will ensure equal elapsed time for each pipetting step without interruption.
− As a general rule the enzymatic reaction is linearly proportional to time and temperature.

6.2 Test Procedure

Each run must include a standard curve.

1. Secure the desired number of Microtiter wells in the frame holder.
2. Dispense 50 µL of Assay Buffer into each well.
3. Dispense 10 µL Enzyme Conjugate into each well.
4. Dispense 50 µL of each Standard, Control and samples with new disposable tips into appropriate wells. Thoroughly mix for 10 seconds. It is important to have a complete mixing in this step.
5. Incubate for 60 minutes at room temperature.
6. Briskly shake out the contents of the wells. Rinse the wells 3 times with diluted Wash Solution (350 µL per well). Strike the wells sharply on absorbent paper to remove residual droplets.

 Important note:
The sensitivity and precision of this assay is markedly influenced by the correct performance of the washing procedure!

7. Add 100 µL of Substrate Solution to each well.
8. Incubate for 15 minutes at room temperature.
9. Stop the enzymatic reaction by adding 100 µL of Stop Solution to each well.
10. Determine the absorbance (OD) of each well at 450 ± 10 nm with a microtiter plate reader. It is recommended that the wells be read within 10 minutes after adding the Stop Solution.

6.3 Calculation of Results

1. Calculate the average absorbance values for each set of standards, controls and patient samples.
2. Manual method: Using linear graph paper, construct a standard curve by plotting the mean absorbance obtained from each standard against its concentration with absorbance value on the vertical (Y) axis and concentration on the horizontal (X) axis.
3. Using the mean absorbance value for each sample determine the corresponding concentration from the standard curve.
4. Automated method: The results in the IFU have been calculated automatically using a 4 Parameter curve fit. (4 Parameter Rodbard or 4 Parameter Marquardt are the preferred methods.). Other data reduction functions may give slightly different results.
5. The concentration of the samples can be read directly from this standard curve. Samples with concentrations higher than that of the highest standard have to be further diluted or reported as > 50 ng/mL. For the calculation of the concentrations this dilution factor has to be taken into account.

6.3.1 Example of Typical Standard Curve
The following data is for demonstration only and cannot be used in place of data generations at the time of assay.

<table>
<thead>
<tr>
<th>Standard</th>
<th>Optical Units (450 nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard 0 (0 ng/mL)</td>
<td>0.05</td>
</tr>
<tr>
<td>Standard 1 (3 ng/mL)</td>
<td>0.23</td>
</tr>
<tr>
<td>Standard 2 (10 ng/mL)</td>
<td>0.63</td>
</tr>
<tr>
<td>Standard 3 (25 ng/mL)</td>
<td>1.37</td>
</tr>
<tr>
<td>Standard 4 (50 ng/mL)</td>
<td>2.35</td>
</tr>
</tbody>
</table>
7 EXPECTED NORMAL VALUES
It is strongly recommended that each laboratory should determine its own normal and abnormal values.

In a study conducted with apparently normal healthy adults, using the IBL CYFRA 21-1 ELISA the following values are observed:

<table>
<thead>
<tr>
<th>Population</th>
<th>Valid N</th>
<th>5th Percentile</th>
<th>95th Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Males and females</td>
<td>35</td>
<td>0.74 ng/mL</td>
<td>2.74 ng/mL</td>
</tr>
</tbody>
</table>

Several studies recommended a cut-off concentration of 3.3 ng/mL for CYFRA 21-1, since all patients without disease and 95% of patients with benign lung diseases are found below this value (1,2,3).

The results alone should not be the only reason for any therapeutic consequences. The results should be correlated to other clinical observations and diagnostic tests.

8 QUALITY CONTROL
Good laboratory practice requires that controls be run with each calibration curve. A statistically significant number of controls should be assayed to establish mean values and acceptable ranges to assure proper performance.

It is recommended to use control samples according to state and federal regulations. The use of control samples is advised to assure the day to day validity of results. Use controls at both normal and pathological levels.

The results alone should not be the only reason for any therapeutic consequences. The results should be correlated to other clinical observations and diagnostic tests.

8 QUALITY CONTROL
Good laboratory practice requires that controls be run with each calibration curve. A statistically significant number of controls should be assayed to establish mean values and acceptable ranges to assure proper performance.

It is recommended to use control samples according to state and federal regulations. The use of control samples is advised to assure the day to day validity of results. Use controls at both normal and pathological levels.

The controls and the corresponding results of the QC-Laboratory are stated in the QC certificate added to the kit. The values and ranges stated on the QC sheet always refer to the current kit lot and should be used for direct comparison of the results.

It is also recommended to make use of national or international Quality Assessment programs in order to ensure the accuracy of the results.

Employ appropriate statistical methods for analysing control values and trends. If the results of the assay do not fit to the established acceptable ranges of control materials patient results should be considered invalid.

In this case, please check the following technical areas: Pipetting and timing devices; photometer, expiration dates of reagents, storage and incubation conditions, aspiration and washing methods.

After checking the above mentioned items without finding any error contact your distributor or IBL directly.

9 PERFORMANCE CHARACTERISTICS
9.1 Assay Dynamic Range
The range of the assay is between 0.15 – 50 ng/mL.

9.2 Specificity of Antibodies (Cross Reactivity)
Cross-reactivity with tumor markers CA 15-3, CA 19-9, CA 125, CA 72-4, was not observed.

9.3 Sensitivity
The analytical sensitivity of the IBL ELISA was calculated by adding 3 standard deviations to the mean of 20 replicate analyses of the Zero Standard (S0) and was found to be 0.15 ng/mL.

9.4 Reproducibility
9.4.1 Intra Assay
The within assay variability is shown below:

<table>
<thead>
<tr>
<th>Sample</th>
<th>n</th>
<th>Mean (ng/mL)</th>
<th>CV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td>17.2</td>
<td>4.5</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>8.3</td>
<td>6.9</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>5.2</td>
<td>5.1</td>
</tr>
</tbody>
</table>

9.4.2 Inter Assay
The between assay variability is shown below:

<table>
<thead>
<tr>
<th>Sample</th>
<th>n</th>
<th>Mean (ng/mL)</th>
<th>CV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>14</td>
<td>15.4</td>
<td>9.3</td>
</tr>
<tr>
<td>2</td>
<td>14</td>
<td>7.9</td>
<td>8.9</td>
</tr>
<tr>
<td>3</td>
<td>14</td>
<td>5.0</td>
<td>5.8</td>
</tr>
</tbody>
</table>
9.5 Recovery
Samples have been spiked by adding CYFRA 21-1 with known concentrations.
The % Recovery has been calculated by multiplication of the ratio of the measurements and the expected values with 100.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Added Concentration (ng/mL)</th>
<th>Measured Conc. (ng/mL)</th>
<th>Expected Conc. (ng/mL)</th>
<th>Recovery (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>19.0</td>
<td>34.5</td>
<td>102.3</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>35.3</td>
<td>34.5</td>
<td>100.4</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>22.1</td>
<td>22.0</td>
<td>100.2</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>14.9</td>
<td>14.5</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>11.6</td>
<td>30.8</td>
<td>89.6</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>27.6</td>
<td>27.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>17.4</td>
<td>18.3</td>
<td>95.1</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>10.8</td>
<td>10.8</td>
<td>100.0</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>7.9</td>
<td>29.0</td>
<td>94.0</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>27.2</td>
<td>27.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>16.4</td>
<td>16.5</td>
<td>99.7</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>8.7</td>
<td>9.0</td>
<td>97.2</td>
</tr>
</tbody>
</table>

9.6 Linearity

<table>
<thead>
<tr>
<th>Sample</th>
<th>Dilution</th>
<th>Measured Conc. (ng/mL)</th>
<th>Expected Conc. (ng/mL)</th>
<th>Recovery (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>None</td>
<td>22.0</td>
<td>22.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1:2</td>
<td>10.0</td>
<td>11.0</td>
<td>91.1</td>
</tr>
<tr>
<td></td>
<td>1:4</td>
<td>5.9</td>
<td>5.5</td>
<td>106.5</td>
</tr>
<tr>
<td></td>
<td>1:8</td>
<td>3.1</td>
<td>2.8</td>
<td>111.2</td>
</tr>
<tr>
<td></td>
<td>1:16</td>
<td>1.5</td>
<td>1.4</td>
<td>105.9</td>
</tr>
<tr>
<td>2</td>
<td>None</td>
<td>18.7</td>
<td>18.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1:2</td>
<td>9.1</td>
<td>9.3</td>
<td>97.6</td>
</tr>
<tr>
<td></td>
<td>1:4</td>
<td>4.4</td>
<td>4.7</td>
<td>93.6</td>
</tr>
<tr>
<td></td>
<td>1:8</td>
<td>2.5</td>
<td>2.3</td>
<td>107.7</td>
</tr>
<tr>
<td></td>
<td>1:16</td>
<td>1.2</td>
<td>1.2</td>
<td>99.9</td>
</tr>
<tr>
<td>3</td>
<td>None</td>
<td>8.8</td>
<td>8.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1:2</td>
<td>4.1</td>
<td>4.4</td>
<td>94.7</td>
</tr>
<tr>
<td></td>
<td>1:4</td>
<td>2.4</td>
<td>2.2</td>
<td>108.2</td>
</tr>
<tr>
<td></td>
<td>1:8</td>
<td>1.1</td>
<td>1.1</td>
<td>102.7</td>
</tr>
<tr>
<td></td>
<td>1:16</td>
<td>0.6</td>
<td>0.6</td>
<td>112.2</td>
</tr>
</tbody>
</table>

10 LIMITATIONS OF USE
Reliable and reproducible results will be obtained when the assay procedure is performed with a complete understanding of the package insert instruction and with adherence to good laboratory practice.
Any improper handling of samples or modification of this test might influence the results.

10.1 Interfering Substances
Haemoglobin (up to 4 mg/mL), Bilirubin (up to 0.5 mg/mL) and Triglyceride (up to 30 mg/mL) have no influence on the assay results.
The assay contains reagents to minimize interference of HAMA and heterophilic antibodies. However, extremely high titers of HAMA or heterophilic antibodies may interfere with the test results.

10.2 Drug Interferences
Until today no substances (drugs) are known to us, which have an influence to the measurement of CYFRA 21-1 in a sample.

10.3 High-Dose-Hook Effect
No hook effect was observed in this test up to 250 ng/mL of CYFRA 21-1.
11 LEGAL ASPECTS

11.1 Reliability of Results

The test must be performed exactly as per the manufacturer’s instructions for use. Moreover the user must strictly adhere to the rules of GLP (Good Laboratory Practice) or other applicable national standards and/or laws. This is especially relevant for the use of control reagents. It is important to always include, within the test procedure, a sufficient number of controls for validating the accuracy and precision of the test.

The test results are valid only if all controls are within the specified ranges and if all other test parameters are also within the given assay specifications. In case of any doubt or concern please contact IBL.

11.2 Therapeutic Consequences

Therapeutic consequences should never be based on laboratory results alone even if all test results are in agreement with the items as stated under point 11.1. Any laboratory result is only a part of the total clinical picture of a patient.

In only cases where the laboratory results are in acceptable agreement with the overall clinical picture of the patient should therapeutic consequences be derived.

The test result itself should never be the sole determinant for deriving any therapeutic consequences.

11.3 Liability

Any modification of the test kit and/or exchange or mixture of any components of different lots from one test kit to another could negatively affect the intended results and validity of the overall test. Such modification and/or exchanges invalidate any claim for replacement.

Claims submitted due to customer misinterpretation of laboratory results subject to point 11.2. are also invalid. Regardless, in the event of any claim, the manufacturer's liability is not to exceed the value of the test kit. Any damage caused to the test kit during transportation is not subject to the liability of the manufacturer.

12 REFERENCES / LITERATURE

7. Muley T., Dienemann H., Ebert W. Increased CYFRA 21-1 and CEA levels are negative predictors of outcome in p-stage I NSCLC. Anticancer Res. 2003; 23(5b); 4085-93.

9. Yamamoto K. et al. CYFRA 21-1 is a useful marker for esophageal squamous cell carcinoma. Cancer; 1997; 1;79(9); 1647-55.

<table>
<thead>
<tr>
<th>Symbols / Symbole / Symbôles / Símbolos / Σύμβολα</th>
</tr>
</thead>
<tbody>
<tr>
<td>REF</td>
</tr>
<tr>
<td>LOT</td>
</tr>
<tr>
<td>USE</td>
</tr>
<tr>
<td>NO</td>
</tr>
<tr>
<td>CONC</td>
</tr>
<tr>
<td>LYO</td>
</tr>
<tr>
<td>IVD</td>
</tr>
<tr>
<td>EVAL</td>
</tr>
<tr>
<td>READ</td>
</tr>
<tr>
<td>STORE</td>
</tr>
<tr>
<td>MANF</td>
</tr>
<tr>
<td>ATTNT</td>
</tr>
</tbody>
</table>

Symbols of the kit components see MATERIALS SUPPLIED.
Die Symbole der Komponenten sind im Kapitel KOMPONENTEN DES KITS beschrieben.
Voir MATERIEL FOURNI pour les symbôles des composants du kit.
Símbolos de los componentes del juego de reactivos, vea MATERIALES SUMINISTRADOS.
Para símbolos dos componentes do kit ver MATERIAIS FORNECIDOS.
Per i simboli dei componenti del kit si veda COMPONENTI DEL KIT.
Για τα σύμβολα των συστατικών του κιτ συμβουλευτείτε το ΠΑΡΕΧΟΜΕΝΑ ΥΛΙΚΑ.

COMPLAINTS: Complaints may be submitted initially written or vocal. Subsequently they need to be filed including the test performance and results in writing in case of analytical reasons.

WARRANTY: The product is warranted to be free from material defects within the specific shelf life and to comply with product specifications delivered with the product. The product must be used according to the Intended use, all instructions given in the instructions for use and within the product specific shelf life. Any modification of the test procedure or exchange or mixing of components of different lots could negatively affect the results. These cases invalidate any claim for replacement.

LIMITATION OF LIABILITY: IN ALL CIRCUMSTANCES THE EXTENT OF MANUFACTURER’S LIABILITY IS LIMITED TO THE PURCHASE PRICE OF THE KIT(S) IN QUESTION. IN NO EVENT SHALL MANUFACTURER BE LIABLE FOR ANY INCIDENTAL OR CONSEQUENTIAL DAMAGES, INCLUDING DAMAGES FOR LOST PROFITS, LOST SALES, INJURY TO PERSON OR PROPERTY OR ANY OTHER INCIDENTAL OR CONSEQUENTIAL LOSS.